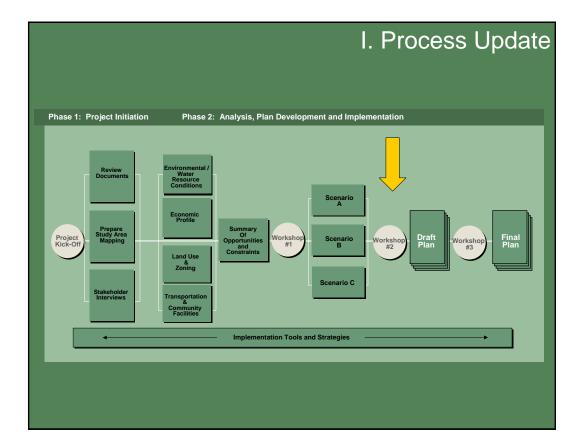


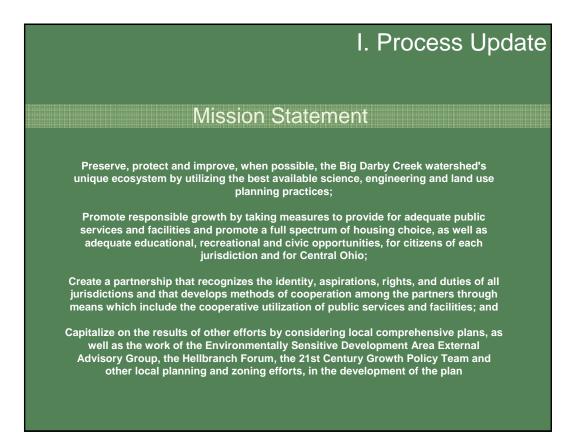
I. Process Update


Background Analysis

- > Data Gathering of Existing Conditions
- Stakeholder Interviews

Environmental Analysis

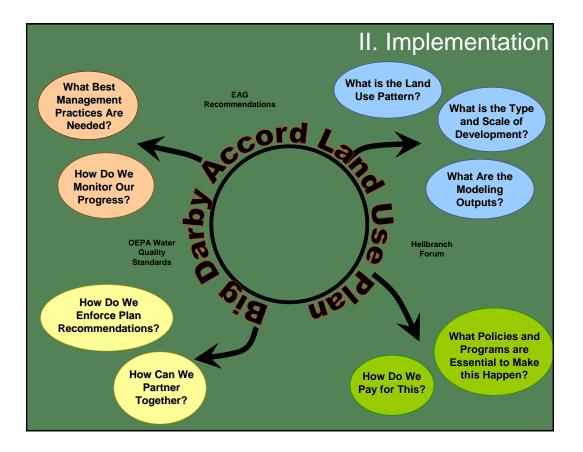
- Natural Resource Conditions
- Identified Sensitive Areas
- Guided Scenario Development
- > June 2005 Public Meeting


Implementation Scenario Development

I. Process Update

What is the Anticipated Outcome of the Big Darby Accord Land Use Plan?

- Phased Land Use Strategy that is Protective of the Watershed Resources
 - Consistent Development Regulations (Zoning, Stormwater, etc.)
 - Toolkit of Recommended Conservation Techniques and Best Practices for Development
 - Mechanisms for Adaptive Management/Monitoring and Enforcement
- Community Facilities, Utility and Transportation Recommendations Based On the Preferred Land Use Plan
- Suggested Programs and Partnerships for Plan Success
- Commitment to Early Implementation Steps Among Accord Members

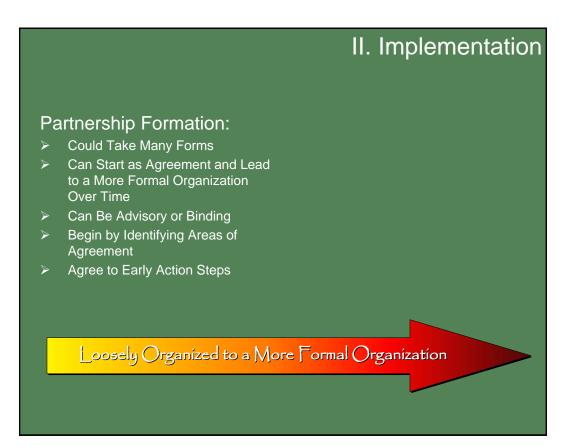


I. Process Update

Tonight We Will:

- Review Implementation and Ideas for Success
- Describe Impacts of Land Use Practices
- Present Land Use Scenarios and Modeling Results
- Ask for Feedback On the Ideas Presented

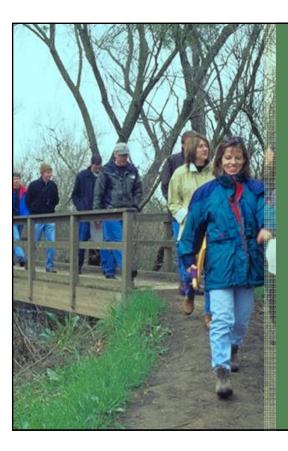
II. Implementation


II. Implementation

Create a Partnership:

- To Accomplish Common Goals
- To Ensure Protection of Darby Watershed
- To Implement Plan
 Policies and
 Recommendations
- To Provide Consistency in Plan Implementation
- To Provide High Level of Service to Residents

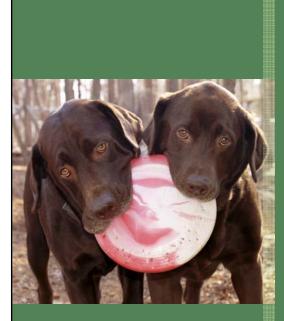
Accord Partnership:


- Comprehensive Enforcement
- Is Organic and Adaptive to Changing Needs
- Can Encourage Cooperative Service Agreements
- Can Address Annexation
- Preserves Autonomy of Jurisdictions
- Can Raise and Spend Money

II. Implementation

What is Possible Under Ohio Law?

- Examined Statutory Provisions and Legal Options
- Determined Strengths and Weaknesses
- Memorandum of Understanding
- Annexation Agreements
- Community Authorities
- Cooperative Economic Development Agreements (CEDA)
- Joint Economic Development Agreements (JED)
- Regional Council of Governments (RCOG)
- A Combination of The Above



II. Implementation

"Early Action Steps..."

- Develop an Agreement Between Jurisdictions to:
 - Continue to Work Together
 - Revise Local Zoning, Comprehensive Plans
 - Revise Stormwater and Subdivision Regulations
 - Initiate Annexation Agreements
 - Initiate Cooperative Service Agreements
 - Provide Oversight and Review of Development Proposals
- Interim Step for Implementation
- Agreement Would Set Schedule for Key Tasks and Identify Responsibilities

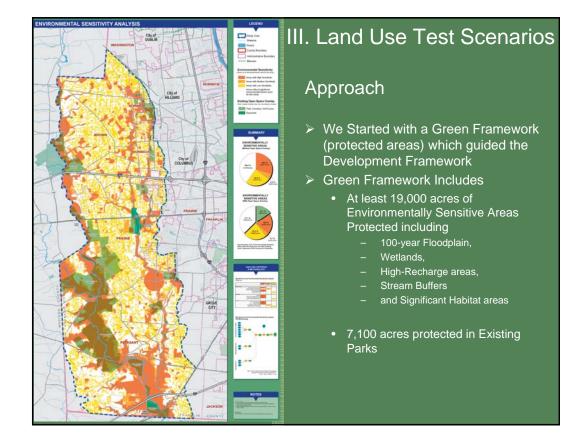
II. Implementation

Potential Long Term Options

- Establish a Formal Partnership or Coordinating Entity
- Work with Local Agencies and Organizations to Create New Programs
 - Address Equity
 - Transfer of Development Rights
 Program
 - Land/Easement Purchase Program
 - Water Quality Credit Program
 - Monitor Change / Adaptive
 Management
 - Water Quality Monitoring (pre and post construction)
 - BMP Monitoring
 - Septic Monitoring
 - Protect Resources
 - Restoration Program

II. Implementation

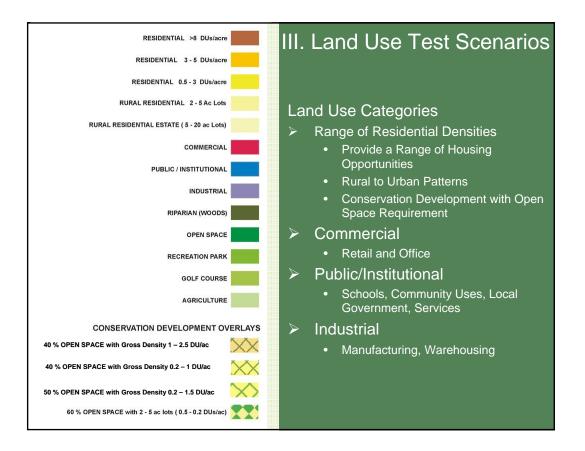
Potential Revenue Sources

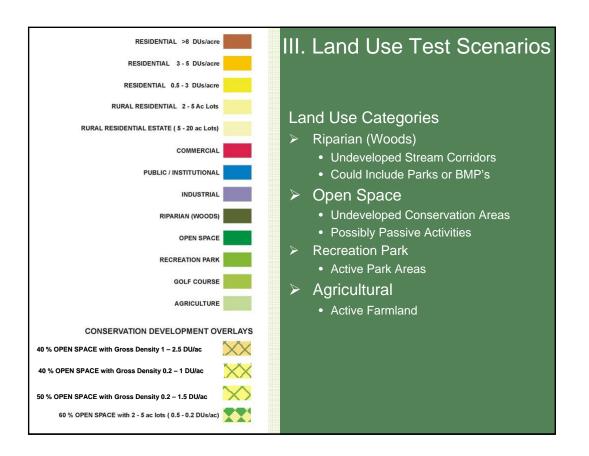

- Leverage Funding Sources to Implement Programs and Plan
 - Dues & Fees
 - Developer Contributions
 - Community Authorities
 - CEDA, TIF, JED
 - Tax Sharing Agreements
 - State and Federal Funding
 - Levies
 - Bonds
 - Others

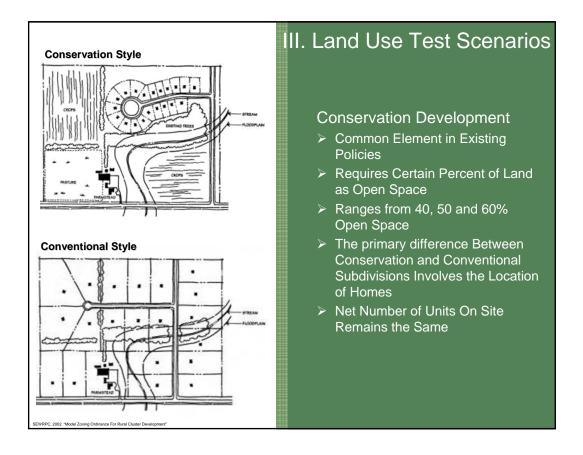
III. Land Use Test Scenarios

Scenario Development

- Multi-faceted Exercise
- Explores Potential Future States of the Watershed
- Considers Variations in Pattern and Intensity of Land Uses
- Compares Performance of Land Uses in Hydrological Model
- Explores Benefits and Challenges of Different Approaches to Development




3 Land Use Scenarios


- Intended as "Build Out"
- Variations in:
 - Uses
 - Location and Pattern of
 Development
 - Intensity of Development
 - Open Space Network
 - New Roadways

III. Land Use Test Scenarios

- Future Land Use Should Reflect
 - Protection of Watershed
 - Anticipated Growth of the Region and How That May Influence Development Within the Study Area
 - Franklin County will reach 1.3 Million
 - by 2030 - Study Area Might Absorb 12% of the
 - County's Growth
 - An Increase from 31,000 to 58,000 or about 87%
 - Long term interests of each
 jurisdiction

Rural Residential Estate

- Single Family, Farmettes
- Very Rural Pattern
- Lots Greater than 5.0 Acres

III. Land Use Test Scenarios

Rural Residential

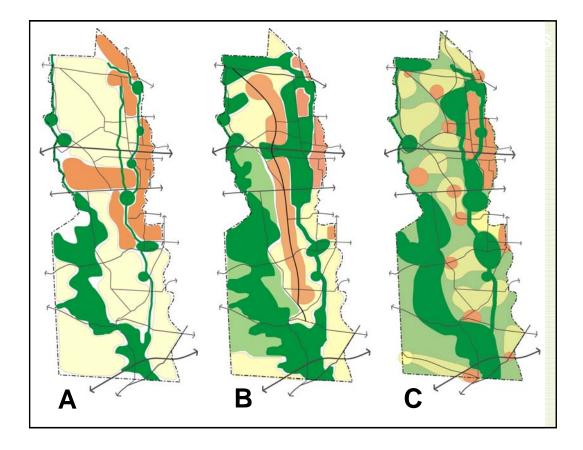
- Single Family, Large Lots
- Rural Pattern
- Lots Between 2.0 5.0 Acres

Medium - High Density

- ➢ Mix of Single and Multi-Family
- > 5 to 8 Units per Acre

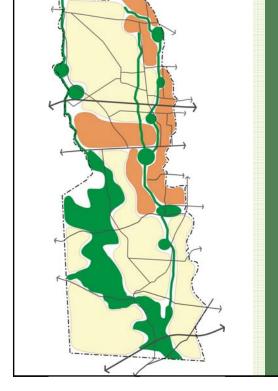
III. Land Use Test Scenarios

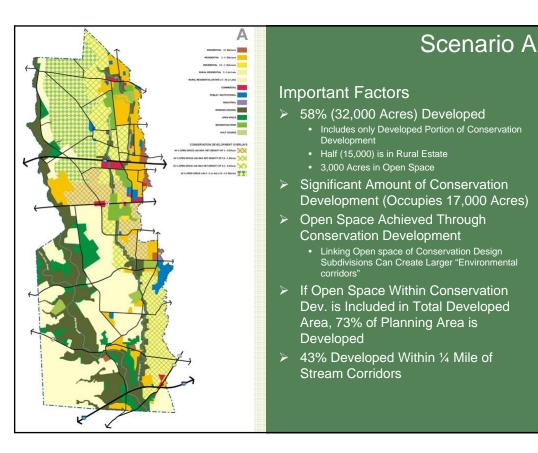
Urban High Density


- Multi-Family, Townhouses, Condos, Apartments
- Greater than 8 Units per Acre

Delaware Place (infill) 18.0 DU/AC

III. Land Use Test Scenarios Commercial Public/Institutional Agriculture Retail and Office > Active Farmland Community Facilities Uses and Services ➢ Schools, Fire, Row Crops > Support Population Police, Recreation, Neighborhood Scale Government Services > Enhance Tax Base PLEASANT TWR 15 12 and the second

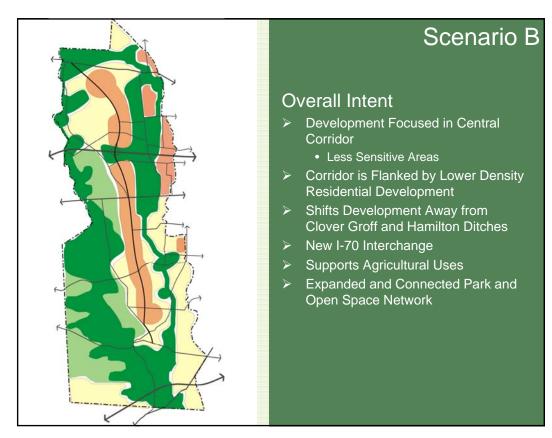

	III. Land U	lse Test Scenarios
 Riparian Woods Undeveloped Along Stream Corridors Public or Private Protect Floodplains Filters Pollutants 	 Undeveloped Along Stream Corridors Public or Private Protect Floodplains Undeveloped Undeveloped Pasture, Prairie, Brush, Woods Public or Private Multi-functional 	
		HERITAGE TRAIL Hydre Trailed



- Mirror Current Policies
- Residential Focus
- Promotes Rural, Mostly Low Density Development
- Most Dense Development in East
 - Near Clover Groff, Hamilton and Hellbranch
 - West Broad Street
- Transition to Lower Density Patterns in West

A

1

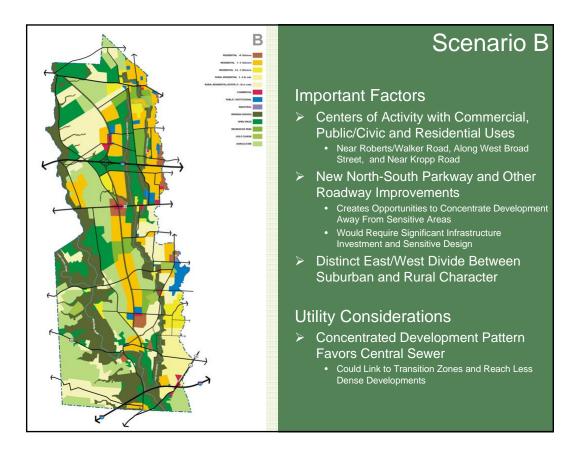

Scenario A

Important Factors

- Landscape Loses Agrarian Character and Promotes Uniform Low Density Pattern
- Growth Corridors Along I-70 and West Broad Street
 - Commercial Centers near Hilliard Rome Road, Amity Street, and I-71/Harrisburg Pike

Utility Considerations

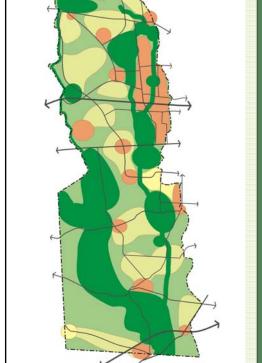
- Rural and Dispersed Pattern is More Difficult to Service With Central Sewer
 - 15,000 Acres of Rural Estate Development
 - Conservation Development Pattern Occupies
 Significant Area
 - Septic Is Likely to Remain a Significant Part of Planning Area

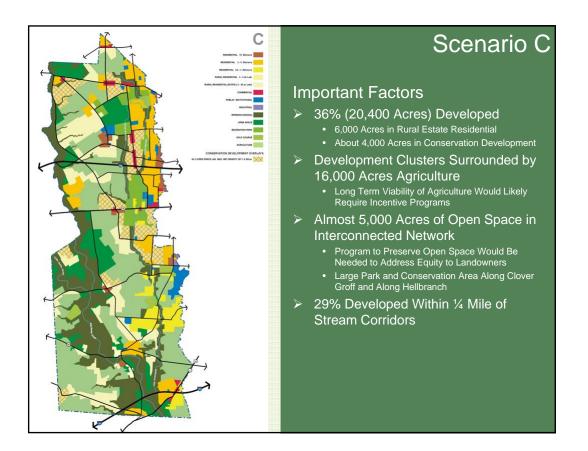

В

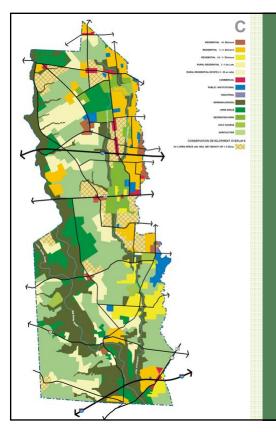
Scenario B

Important Factors

➤ 44% (24,000 Acres) Developed

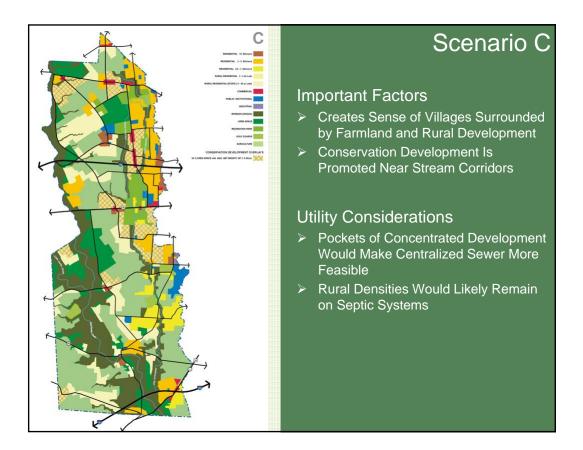

- 89 Acres Rural Estate Residential
- No Conservation Development
- 8,000 Acres of Medium and High Density Development
- 10,000 Acres in Agriculture
 - Long Term Viability of Agriculture Would Likely Require Incentive Programs
- Almost 8,000 Acres of Consolidated Open Space
 - Program to Guide Density to the Corridor and Preserve Open Space Would Be Needed to Address Equity to Landowners
- 32% Developed Within ¼ Mile of Stream Corridors





Overall Intent:

- Concentrated Clusters of Development
- Incorporates Existing Nodes of Development
- Creates Centers of Activity and Preserves Rural Character
- Higher Densities in Focused Nodes with Mix of Uses
- Supports Agriculture as Transition Between Nodes and Parks and Open Spaces


Scenario C

Important Factors

- Creates Sense of Villages Surrounded by Farmland and Rural Development
- Conservation Development Is
 Promoted Near Stream Corridors

Utility Considerations

- Pockets of Concentrated Development Would Make Centralized Sewer More Feasible
- Rural Densities Would Likely Remain on Septic Systems

- 111.	Lanu	Use	rest	Scer	ianc

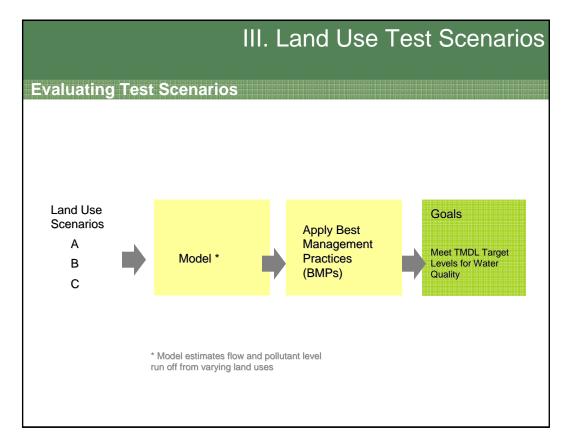
Scenario Summary:

	Land Developed	Build Out Housing Units		Build Out Population		
Α	32,417	25,930	53,682	66,899	138,501	
В	24,442	29,538	52,942	76,207	136,590	
С	20,427	27,614	50,351	71,245	129,907	

Total Study Area Equals 56,027 acre

Population Projections Determined By Multiplying the Number of Housing Units by Averag Household Size of 2.5

Land Developed


- Scenario A: 58% Developed
- ➢ Scenario B: 44% Developed
- > Scenario C: 36% Developed

Population Growth

- The Number of Units Varies According to Density
- Current Population is About 31,000
- Average Build Out Population of 100,000

Land Use Comparison:

Land Use	Existing	Scenario A	Scenario B	Scenario C
Agriculture	32,872	0	10,277	15,659
Park & Open Space (Includes riparian and cons dev. open space)	8,120	24,272	21,971	20,604
Rural Residential	7,141	17,496	10,196	8,054
Suburban / Urban Residential	4,993	10,923	9,574	8,006
Public	620	781	947	933
Commercial	224	498	337	464
Industrial	42	42	42	42
Other Uses (Major Roads & Transportation etc.)	2,014	2,014	2,682	2,264
Total acres	56,026	56,026	56,026	56,026

Why Model?

- One of Several Evaluation Tools
- To Better Understand Impacts of Land Use Changes on Hydrology and Various Pollutants
- Facilitate selection of suitable BMPs
- Enhance development regulations and processes

Model Components

- In Consultation with OSU
- OEPA Provided Input on Process and Shared TMDL Model Information
- Goal: Meet OEPA Water Quality Goals

III. Land Use Test Scenarios

Ohio EPA

- Biological Assessments
- Habitat/Use Attainment
- > TMDL
 - Target Pollutant Loading
 - Stream Baseflow
 Considerations

EAG Recommendations

- > Performance Based Stormwater Criteria
- Stream Buffer Requirements and Preservation
- Conservation Development Recommendations

Hellbranch Watershed Forum

- Policy Recommendations for Riparian Buffer, and Floodplain and Stormwater Management
- Pollutant Loading Analysis
- BMP Characterization

MODEL OUTPUT

Depth of Flow and Flow Rate

- Calculation Relating to Volume of Water Flowing to Streams
- Flow relates to Rate or Speed of the Water

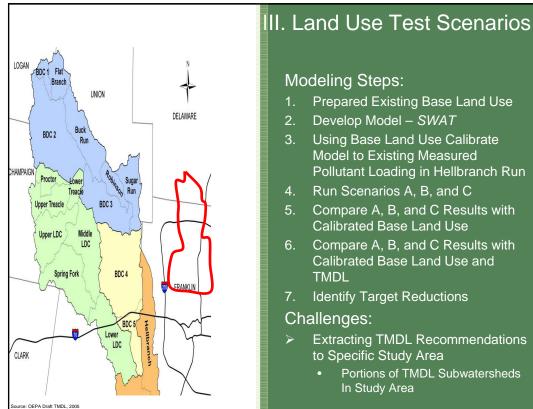
Total Suspended Solids

- Sources Include Erosion of Soil And Wash-off of Dirt and Other Accumulated Solids From Impervious Surfaces
- Turbidity and Deposited Sediment Can Smother Creek-bottom Habitat and Destroy Breeding Areas
- Other Pollutants May Bind to Sediment Particles and be Transported to the Stream

III. Land Use Test Scenarios

Nutrients

Phosphorous and Nitrogen

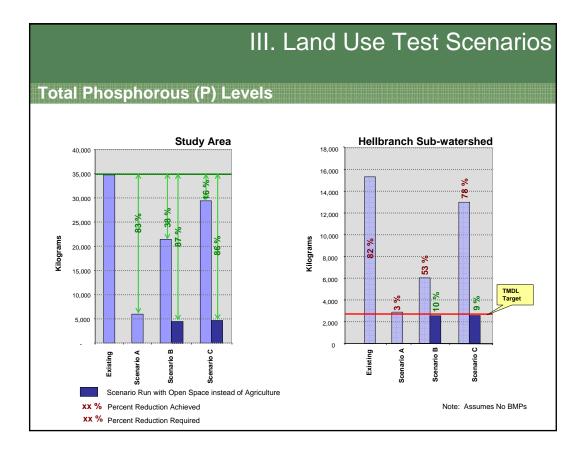

- Primary Components of Lawn, Garden and Crop Fertilizers
- Released During Decomposition of Organic Matter Like Leaves, Grass Clippings, Food and Animal Wastes
- Excessive Concentrations In Streams and Ponds Can Promote Algal Blooms
 - Excessive Algal Growth Affects Dissolved
 Oxygen Levels
 - Impacts Organisms And Stresses Stream

III. Land Use Test Scenarios

Steps to Modeling

- Understand OEPA (TMDL) Targets
- Test Model on 500 Acre Pilot Study Area
- Better Understand How Certain Factors Affect Output
 - Agriculture
 - Open Space
 - Riparian Areas
 - Conservation or Conventional
 Development

Model Output:


- Values Received
 - Total Suspended Solids
 - Nitrogen
 - Phosphorous
- Compare Scenarios to \triangleright Baseline for Pollutants and Flow
 - Re-run Scenarios B and C replacing Agriculture with Open Space
- \triangleright **Compare Hellbranch** Portion of Study to TMDL
 - **Determine Percent Reductions** Needed for Hellbranch

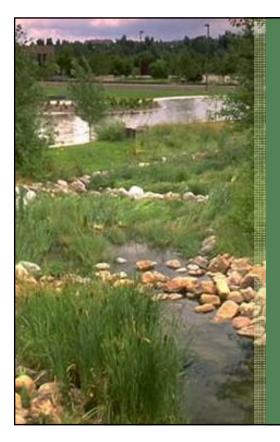
Extracting TMDL Recommendations

III. Land Use Test Scenarios



Comparison of Performance Factors

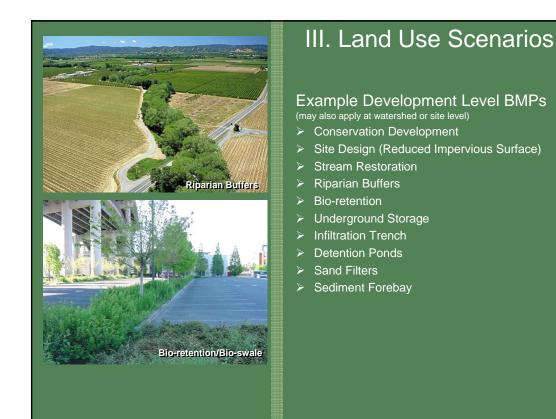
Summary for Hellbranch Run Sub-watershed


	% Reducti	on Required to M	eet TMDL	Flow	score	Relative Required BMP Level
Scenario	N	Ρ	TSS	(% Reduction to Maintain)		
Existing	79	82	95	-	256	High
Scenario A	35	3	91	14	143	Medium Low
Scenario B	53	53	95	9	210	Medium
Scenario B with No Ag/Better Ag Practices	27	(10)	91	8	116	Low
Scenario C	72	78	96	15	261	High
Scenario C with No Ag/Better Ag Practices	27	(9)	89	14	121	Low

Best Management Practices

- Provide Pollutant Removal Benefits, Among Others
- Control Stormwater Run-off
- Can Contribute to Site Design and Quality of Life
- Can Be Applied to New Development and Retrofitted Into Existing Developments
- Vary in Size, Scale, Cost, and Applicability
- Requirements Based on Development Permitting Process

Best Management Practices

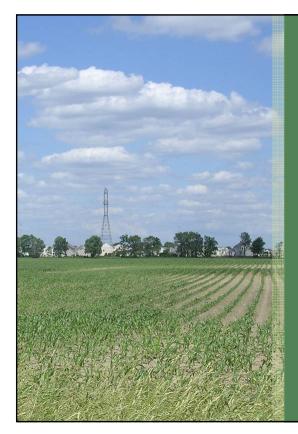

- Currently Evaluating BMP Effectiveness
- Development Must Meet the Statewide General Stormwater Permit as a Minimum
- OEPA is Considering a More Stringent Stormwater Permit for Darby Watershed
- Darby Accord Process Will Also Seek Increased Levels of Protection

III. Land Use Scenarios

Example Lot Level BMPs

- ➤ Easements
- ➢ Filter Strips
- Grassed Waterway or Swale
- Porous Pavement

		III.	Mod	eli	ng	S	cenarios
MP Evaluation							
	Pollutant	Removal Ef	ficiency *	Sc	ale of	Use	
CATEGORIES OF BEST MANAGEMENT PRACTICE	Total Suspended Solids (TSS)	Total Nitrogen (TN)	Total Phosporous (TP)	Watershed-level	Development-level	Lot-level	
Stormwater Detention				×	×	×	
Dry Basin	60-90%	20-30%	20-40%				
Wet Basin Stormwater Wetland	80-90%	40-80%	30-40				-
Infiltration Practices	70-99%	50-99%	40-99%		x	x	-
Bio-retention	75-80%	50%***	65%***		^	^	-
Sand Filter	75-95%	20-80%	30-70%				
Conservation Practices				x	х	х	
Grass Swale	60-80%	40-90%	10-45%				As reported by the HWF ("Pollutant Loading Report") ""From Tom Schueler (CWP) documents
Riparian Buffer	60 - 80%	40%**	50%**				*** USEPA Data Source This List is Not Intended to be Comprehensive


- BMPs Can Provide Significant Pollutant Removal Benefits to Help Achieve TMDL Targets
- Function: Detention, Infiltration, Pollutant Removal, Scale, Habitat Impact
- Sustainment: Maintenance, Cost, Safety, Appearance
- Must Consider Issues Related to Function and Sustainment of BMPs

Application of BMPs

- Must Provide Increased Level of Protection
- Need Mechanism to Ensure BMP is Working (pre and post construction)
- Need a Consistent Approach to Monitor Site-Level Water Quality
 - Could Incorporate Stream Monitoring
 - Partnership Between Jurisdictions and Agencies

Conclusion

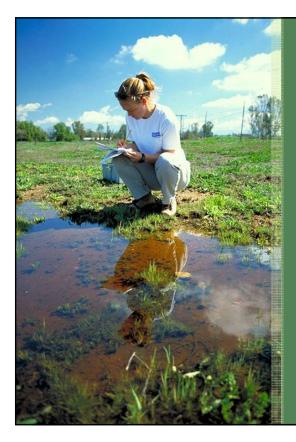
Discussion Topics

Process

- The Big Darby Accord Process is Important (and historic) for Central Ohio
- Balancing Multiple Interests is Challenging
 - 10 Jurisdictions, Private Property Owners, the Environmental Community, and Other Private Interests
- Next Step Preferred Plan

Land Use / Growth Pressures

- What Proportion of Central Ohio's Growth Should be Accommodated Within the Study Area?
- Development Pressure Continues
- What is the Future of Farming?


Discussion Topics

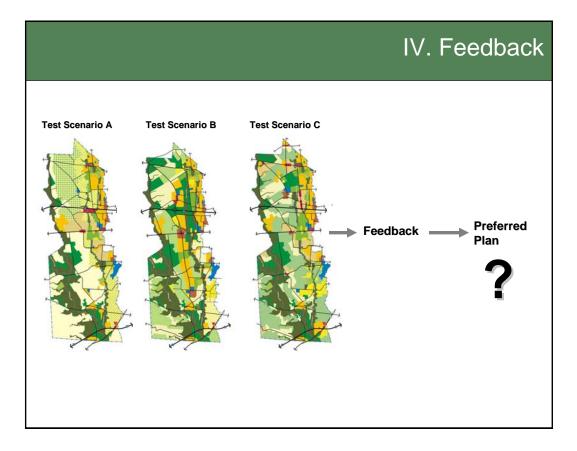
Land Use Pattern

- Protecting Sensitive Areas is Critical to Watershed Health
- Conservation Style Development (Clustering Development) Helps Protect Water Quality
- Open Space Has Multiple Benefits

Infrastructure

- Multiple, Small Clusters of Development Would Likely Have a Higher Infrastructure Cost Than Fewer Larger Clusters of Development
 - > Sewer vs. Septic
 - Roadway Improvements
 - Public Facilities

Discussion Topics


Environmental / Best Management Practices (BMP)

- Stormwater Policies
- Implement BMP Program
- Implement Monitoring Program to Ensure Water Quality Improvement
- Encourage Use of Best Practices for Agriculture Activities Address Septic System Issues

Implementation

- Need to Implement Near Term (or Interim) Agreement to Address Development Pressure Next Steps for the Accord Commitments to Changing Policies

 - Financial Requirements
 - Infrastructure Provision

IV. Feedback

Small Group Work Sessions

- ➢ 45 Minutes to Discuss Information Presented and Provide Feedback
- Feedback Helpful In Formulating **Development of Preferred Plan**
- Questions to be Answered:
 - What Programs are Critical to Protection of the Watershed While Balancing the Need for Protection?
 - What Do you Like and Dislike about Each Scenario?
- Report Back

www.franklincountyohio.gov/BigDarbyAccord

Additional Input Opportunities:

- Project Phone Line 614.462.5629
- Comment Sheets
- Future Public Meetings